N
MATLAB Çѹ濡 ³¡³»±â - Advanced2 (¼öÇÐ,ÄÁÆ®·Ñ)
[°úÇÐ] ±ÇÁØÇ¥ ¼±»ý´Ô Àüü °ÁÂ
°ÁÂÁ¤º¸
°Á ¹üÀ§ | °øÇа迿¡¼ ÇÊ¿äÇÑ Àü¹ÝÀûÀÎ ¸ÅÆ®·¦ÀÇ ¼öÇÐ, ÄÁÆ®·Ñ |
---|---|
³»¿ë ¹× Ư¡ |
»ó¼¼ÇÑ À̷аú ½Ç½ÀÀ» ¹ÙÅÁÀ¸·Î MATLAB Çѹ濡 ³¡³»±â! [°»ç¼Ò°³] ¸·½ºÇöûÅ©¿¬±¸¼Ò(Æ÷Ã÷´ã, µ¶ÀÏ) ¹Ú»ç ÈÄ ¿¬±¸¿ø University of California,Berkeley PhD °í·Á´ëÇб³ ±â°è°øÇаú ¼®»ç Á¹¾÷ °í·Á´ëÇб³ ±â°è°øÇаú Á¹¾÷ Çö)À¯´Ï½ºÅ͵ð °øÇÐ°è¿ 1Ÿ°»ç(±â°èÀü°ø/¸ÅÆ®·¦) ´©Àû ¼ö°»ý 38,431¸í µ¹ÆÄ Àü)Çö´ëÁß°ø¾÷ Ç÷£Æ®»ç¾÷ºÎ (ÃÊÀÓ°è¾Ðº¸ÀÏ·¯ ¼³°è) [ÇнÀ¸ñÇ¥] - MATLABÀÇ ±âº»ºÎÅÍ ÇٽɱîÁö ÇÊ¿äÇÑ ³»¿ëÀ» ²Ä²ÄÇÏ°Ô ¼³¸íÇÑ´Ù. - °øÇеµ°¡ ¹è¿ö¾ß ÇÒ Àü°ø ÀÌ·ÐÀ» ½±°Ô ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼³¸íÇÑ´Ù. - Àü°ø ¿¹Á¦¿¡ Àû¿ëÇØ º½À¸·Î½á MATLAB°ú Àü°ø ¸ðµÎ¸¦ ¹è¿ï ¼ö ÀÖ´Ù.
[ÇнÀ³»¿ë] 1. ¹ÌºÐ ¹æÁ¤½Ä, º§ÅÍ Çʵå 2. »ó¹ÌºÐ¹æÁ¤½Ä È°¿ë: ÃßÀû¹®Á¦ 3. »ó¹ÌºÐ¹æÁ¤½Ä È°¿ë: RobertsonÀÇ ÈÇйÝÀÀ ¸ðµ¨, ±âÈ£ »ó¹ÌºÐ¹æÁ¤½Ä Ç®ÀÌ(dsolve) 4. °æ°èÄ¡ ¹®Á¦(bvp4c) 5. Æí¹ÌºÐ ¹æÁ¤½Ä(pdepe) 6. ÇÔ¼öÀÇ ±ØÇÑ, ¹ÌºÐ(diff), ºÎÁ¤ÀûºÐ, Á¤ÀûºÐ, ¼öÄ¡ÀûºÐ, ´ÙÁßÀûºÐ, Symbolic ÀûºÐ 7. ´ÙÇ×½Ä °ªÀÇ °è»ê, °ö¼À°ú ³ª´°¼À, Chebyshev ´ÙÇ×½Ä 8. Symbolic ´ÙÇ×½Ä, ½ÄÀÇ Àü°³¿Í ÀμöºÐÇØ, ½ÄÀÇ ´Ü¼øÈ, Taylor¼ö¿ 9. ÆĶó¹ÌÅ͸¦ ÀÌ¿ëÇÑ °î¼±ÀÇ Ç¥Çö, Á¢¼±º¤ÅÍ¿Í ¼Óµµ, È£ÀDZæÀÌ(´Ù°¢Çü ±Ù»ç, ¼öÄ¡ÀûºÐ ÇÔ¼ö, ÆĶó¹ÌÅÍ) 10. Æò¸é¿¡¼ÀÇ È¸Àü, ±ØÁÂÇ¥¸¦ ÀÌ¿ëÇÑ ¼öÄ¡ÇÔ¼ö ±×·¡ÇÁ, Æí¹ÌºÐ°ú ¹æÇâ¹ÌºÐ 11. ±â¿ï±â º¤ÅÍ¿Í ¼öÁØ°î¼±, Á¢¼±Æò¸é ±Ù»ç, 3Â÷¿ø ±â¿ï±â º¤ÅÍÇʵå 12. Ç¥¸éÀÇ ÆĶó¹ÌÅÍ Ç¥Çö(ȸÀüÇ¥¸é, ezsurf) 13. ÀÓ°èÁ¡°ú ¹ÌºÐÅ×½ºÆ® 14. ±Ø°ªÀÇ °è»ê, ÃÖ´ëÇÏÇâ°æ»ç ¹æ¹ý(Steepest Descent Method) 15. Newton ¹æ¹ý, MATLAB ÇÔ¼ö¸¦ ÀÌ¿ëÇÑ ÃÖÀûÈ(fminbnd, fminsearch) 16. Laplace º¯È¯, ¿ª Laplace º¯È¯, Laplace º¯È¯À» ÀÌ¿ëÇÑ ¹ÌºÐ¹æÁ¤½Ä Ç®ÀÌ 17. Fourier º¯È¯, ¿ª Fourier º¯È¯, °í¼Ó Fourier º¯È¯(Fast Fourier Transform) 18. Àü´ÞÇÔ¼ö, »óÅÂÇÔ¼ö 19. ºí·Ï¼±µµ(Á÷·Ä, º´·Ä, feedback) 20. Æú(Pole)-¿µÁ¡(Zero) ¼Ò°Å, ½Ã½ºÅÛÀÇ ÀÀ´ä(°è´Ü, ÀÓÆÞ½º, lsim) 21. Root locus, Bode ¼±µµ, Nyquist ¼±µµ, Nichols ¼±µµ, PM, GM 22. Simulink |
¼ö° ´ë»ó | - MATLAB ÀÔ¹®ÀÚ |
°ÀǸñÂ÷
°ÀǸí | ¸Àº¸±â |
---|---|
1. ¹ÌºÐ ¹æÁ¤½Ä, º§ÅÍ Çʵå |